Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Wiley Interdiscip Rev RNA ; 14(2): e1752, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35899407

RESUMO

Transcription factors (TFs) are present in all life forms and conserved across great evolutionary distances in eukaryotes. From yeast to complex multicellular organisms, they are pivotal players of cell fate decision by orchestrating gene expression at diverse molecular layers. Notably, TFs fine-tune gene expression by coordinating RNA fate at both the expression and splicing levels. They regulate alternative splicing, an essential mechanism for cell plasticity, allowing the production of many mRNA and protein isoforms in precise cell and tissue contexts. Despite this apparent role in splicing, how TFs integrate transcription and splicing to ultimately orchestrate diverse cell functions and cell fate decisions remains puzzling. We depict substantial studies in various model organisms underlining the key role of TFs in alternative splicing for promoting tissue-specific functions and cell fate. Furthermore, we emphasize recent advances describing the molecular link between the transcriptional and splicing activities of TFs. As TFs can bind both DNA and/or RNA to regulate transcription and splicing, we further discuss their flexibility and compatibility for DNA and RNA substrates. Finally, we propose several models integrating transcription and splicing activities of TFs in the coordination and diversification of cell and tissue identities. This article is categorized under: RNA Processing > Splicing Regulation/Alternative Splicing RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA Processing > Splicing Mechanisms.


Assuntos
Diferenciação Celular , Linhagem da Célula , Splicing de RNA , Fatores de Transcrição , Transcrição Gênica , Diferenciação Celular/genética , Splicing de RNA/genética , Fatores de Transcrição/metabolismo , Linhagem da Célula/genética , Análise Espaço-Temporal , DNA Polimerase II/química , DNA Polimerase II/metabolismo , DNA/metabolismo , RNA/metabolismo , Humanos , Animais
2.
Nat Commun ; 13(1): 5037, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-36028502

RESUMO

Hox proteins have similar binding specificities in vitro, yet they control different morphologies in vivo. This paradox has been partially solved with the identification of Hox low-affinity binding sites. However, anterior Hox proteins are more promiscuous than posterior Hox proteins, raising the question how anterior Hox proteins achieve specificity. We use the AP2x enhancer, which is activated in the maxillary head segment by the Hox TF Deformed (Dfd). This enhancer lacks canonical Dfd-Exd sites but contains several predicted low-affinity sites. Unexpectedly, these sites are strongly bound by Dfd-Exd complexes and their conversion into optimal Dfd-Exd sites results only in a modest increase in binding strength. These small variations in affinity change the sensitivity of the enhancer to different Dfd levels, resulting in perturbed AP-2 expression and maxillary morphogenesis. Thus, Hox-regulated morphogenesis seems to result from the co-evolution of Hox binding affinity and Hox dosage for precise target gene regulation.


Assuntos
Proteínas de Drosophila , Fatores de Transcrição , Sítios de Ligação , Regulação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Genes Homeobox , Proteínas de Homeodomínio
3.
Nucleic Acids Res ; 50(2): 763-783, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-34931250

RESUMO

Transcription factors (TFs) play a pivotal role in cell fate decision by coordinating gene expression programs. Although most TFs act at the DNA layer, few TFs bind RNA and modulate splicing. Yet, the mechanistic cues underlying TFs activity in splicing remain elusive. Focusing on the Drosophila Hox TF Ultrabithorax (Ubx), our work shed light on a novel layer of Ubx function at the RNA level. Transcriptome and genome-wide binding profiles in embryonic mesoderm and Drosophila cells indicate that Ubx regulates mRNA expression and splicing to promote distinct outcomes in defined cellular contexts. Our results demonstrate a new RNA-binding ability of Ubx. We find that the N51 amino acid of the DNA-binding Homeodomain is non-essential for RNA interaction in vitro, but is required for RNA interaction in vivo and Ubx splicing activity. Moreover, mutation of the N51 amino acid weakens the interaction between Ubx and active RNA Polymerase II (Pol II). Our results reveal that Ubx regulates elongation-coupled splicing, which could be coordinated by a dynamic interplay with active Pol II on chromatin. Overall, our work uncovered a novel role of the Hox TFs at the mRNA regulatory layer. This could be an essential function for other classes of TFs to control cell diversity.


Assuntos
Proteínas de Drosophila/metabolismo , Proteínas de Homeodomínio/metabolismo , RNA Polimerase II/metabolismo , Splicing de RNA , RNA/genética , RNA/metabolismo , Fatores de Transcrição/metabolismo , Aminoácidos , Animais , Sítios de Ligação , Sequenciamento de Cromatina por Imunoprecipitação , Proteínas de Drosophila/genética , Drosophila melanogaster , Regulação da Expressão Gênica , Modelos Biológicos , Especificidade de Órgãos/genética , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , RNA-Seq
4.
J Cell Sci ; 133(18)2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32878938

RESUMO

Hox proteins are major regulators of embryonic development, acting in the nucleus to regulate the expression of their numerous downstream target genes. By analyzing deletion forms of the Drosophila Hox protein Ultrabithorax (Ubx), we identified the presence of an unconventional nuclear export signal (NES) that overlaps with a highly conserved motif originally described as mediating the interaction with the PBC proteins, a generic and crucial class of Hox transcriptional cofactors that act in development and cancer. We show that this unconventional NES is involved in the interaction with the major exportin protein CRM1 (also known as Embargoed in flies) in vivo and in vitro We find that this interaction is tightly regulated in the Drosophila fat body to control the autophagy-repressive activity of Ubx during larval development. The role of the PBC interaction motif as part of an unconventional NES was also uncovered in other Drosophila and human Hox proteins, highlighting the evolutionary conservation of this novel function. Together, our results reveal the extreme molecular versatility of a unique short peptide motif for controlling the context-dependent activity of Hox proteins both at transcriptional and non-transcriptional levels.


Assuntos
Proteínas de Drosophila , Drosophila , Transporte Ativo do Núcleo Celular , Animais , Autofagia/genética , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Corpo Adiposo/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Peptídeos , Fatores de Transcrição/metabolismo
5.
Mol Syst Biol ; 16(5): e9497, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32430985

RESUMO

Studying the spatiotemporal control of gene regulatory networks at the single-cell level is still a challenge, yet it is key to understanding the mechanisms driving cellular identity. In their recent study, Aerts and colleagues (González-Blas et al, 2020) develop a new strategy to spatially map and integrate single-cell transcriptome and epigenome profiles in the Drosophila eye-antennal disc and to deduce in each cell precise enhancer-to-gene activity relationships. This opens a new era in the transcriptional regulation field, as it allows extracting from each of the thousands of cells forming a tissue the critical features driving their identity, from enhancer sequences to transcription factors to gene regulatory networks.


Assuntos
Epigenômica , Transcriptoma , Animais , Biologia Computacional , Redes Reguladoras de Genes , Genômica
6.
Nat Commun ; 11(1): 1388, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-32170121

RESUMO

Transcription factors (TFs) control cell fates by precisely orchestrating gene expression. However, how individual TFs promote transcriptional diversity remains unclear. Here, we use the Hox TF Ultrabithorax (Ubx) as a model to explore how a single TF specifies multiple cell types. Using proximity-dependent Biotin IDentification in Drosophila, we identify Ubx interactomes in three embryonic tissues. We find that Ubx interacts with largely non-overlapping sets of proteins with few having tissue-specific RNA expression. Instead most interactors are active in many cell types, controlling gene expression from chromatin regulation to the initiation of translation. Genetic interaction assays in vivo confirm that they act strictly lineage- and process-specific. Thus, functional specificity of Ubx seems to play out at several regulatory levels and to result from the controlled restriction of the interaction potential by the cellular environment. Thereby, it challenges long-standing assumptions such as differential RNA expression as determinant for protein complexes.


Assuntos
Linhagem da Célula/fisiologia , Proteínas de Drosophila/metabolismo , Drosophila/embriologia , Drosophila/metabolismo , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição/metabolismo , Animais , Cromatina/metabolismo , Drosophila/genética , Proteínas de Drosophila/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Genes de Insetos , Proteínas de Homeodomínio/genética , Masculino , Mesoderma/citologia , Mesoderma/metabolismo , Domínios e Motivos de Interação entre Proteínas , Mapas de Interação de Proteínas , RNA/metabolismo , Fatores de Transcrição/genética
7.
Elife ; 82019 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-31050646

RESUMO

During development cells become restricted in their differentiation potential by repressing alternative cell fates, and the Polycomb complex plays a crucial role in this process. However, how alternative fate genes are lineage-specifically silenced is unclear. We studied Ultrabithorax (Ubx), a multi-lineage transcription factor of the Hox class, in two tissue lineages using sorted nuclei and interfered with Ubx in mesodermal cells. We find that depletion of Ubx leads to the de-repression of genes normally expressed in other lineages. Ubx silences expression of alternative fate genes by retaining the Polycomb Group protein Pleiohomeotic at Ubx targeted genomic regions, thereby stabilizing repressive chromatin marks in a lineage-dependent manner. Our study demonstrates that Ubx stabilizes lineage choice by suppressing the multipotency encoded in the genome via its interaction with Pho. This mechanism may explain why the Hox code is maintained throughout the lifecycle, since it could set a block to transdifferentiation in adult cells.


Assuntos
Plasticidade Celular , Proteínas de Drosophila/metabolismo , Drosophila/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição/metabolismo , Animais , Proteínas de Drosophila/deficiência , Técnicas de Silenciamento de Genes , Proteínas do Grupo Polycomb/metabolismo , Fatores de Transcrição/deficiência
8.
Sci Rep ; 8(1): 10041, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29968728

RESUMO

Lysine-specific demethylase 1 (LSD1) exerts dual effects on histone H3, promoting transcriptional repression via Lys4 (H3K4) demethylation or transcriptional activation through Lys9 (H3K9) demethylation. These activities are often exerted at transcriptional start sites (TSSs) and depend on the type of enhancer-bound transcription factor (TFs) with which LSD1 interacts. In particular, the Estrogen-Receptor Related α (ERRα) TF interacts with LSD1 and switches its activities toward H3K9 demethylation, resulting in transcriptional activation of a set of common target genes. However, how are the LSD1-TF and, in particular LSD1-ERRα, complexes determined to act at TSSs is not understood. Here we show that promoter-bound nuclear respiratory factor 1 (NRF1), but not ERRα, is essential to LSD1 recruitment at the TSSs of positive LSD1-ERRα targets. In contrast to ERRα, NRF1 does not impact on the nature of LSD1 enzymatic activity. We propose a three factor model, in which the LSD1 histone modifier requires a TSS tethering factor (NRF1) as well as an activity inducer (ERRα) to transcriptionally activate common targets. The relevance of this common network is illustrated by functional data, showing that all three factors are required for cell invasion in an MMP1 (Matrix MetalloProtease 1)-dependent manner, the expression of which is regulated by NRF1/LSD1/ERRα-mediated H3K9me2 demethylation.


Assuntos
Histona Desmetilases/metabolismo , Fator 1 Nuclear Respiratório/metabolismo , Receptores de Estrogênio/metabolismo , Linhagem Celular , Cromatina/metabolismo , Expressão Gênica , Regulação da Expressão Gênica , Células HEK293 , Histonas/metabolismo , Humanos , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo , Sítio de Iniciação de Transcrição , Transcrição Gênica , Ativação Transcricional , Receptor ERRalfa Relacionado ao Estrogênio
9.
Int J Dev Biol ; 62(11-12): 723-732, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30604842

RESUMO

Hox transcription factors (TFs) function as key determinants in the specification of cell fates during development. They do so by triggering entire morphogenetic cascades through the activation of specific target genes. In contrast to their fundamental role in development, the molecular mechanisms employed by Hox TFs are still poorly understood. In recent years, a new picture has emerged regarding the function of Hox proteins in gene regulation. Initial studies have primarily focused on understanding how Hox TFs recognize and bind specific enhancers to activate defined Hox targets. However, genome-wide studies on the interactions and dynamics of Hox proteins have revealed a more elaborate function of the Hox factors. It is now known that Hox proteins are involved in several steps of gene expression with potential regulatory functions in the modification of the chromatin landscape and its accessibility, recognition and activation of specific cis-regulatory modules, assembly and activation of promoter transcription complexes and mRNA processing. In the coming years, the characterization of the molecular activity of Hox TFs in these mechanisms will greatly contribute to our general understanding of Hox activity.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Genes Homeobox , Regiões Promotoras Genéticas , Fatores de Transcrição/genética , Animais , Cromatina/genética
10.
PLoS One ; 12(11): e0188871, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29190800

RESUMO

The LSD1 histone demethylase is highly expressed in breast tumors where it constitutes a factor of poor prognosis and promotes traits of cancer aggressiveness such as cell invasiveness. Recent work has shown that the Estrogen-Related Receptor α (ERRα) induces LSD1 to demethylate the Lys 9 of histone H3. This results in the transcriptional activation of a number of common target genes, several of which being involved in cellular invasion. High expression of ERRα protein is also a factor of poor prognosis in breast tumors. Here we show that, independently of its demethylase activities, LSD1 protects ERRα from ubiquitination, resulting in overexpression of the latter protein. Our data also suggests that the elevation of LSD1 mRNA and protein in breast cancer (as compared to normal tissue) may be a key event to increase ERRα protein, independently of its corresponding mRNA.


Assuntos
Neoplasias da Mama/genética , Histona Desmetilases/metabolismo , Receptores de Estrogênio/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Desmetilação , Feminino , Histona Desmetilases/genética , Humanos , Receptores de Estrogênio/genética , Receptor ERRalfa Relacionado ao Estrogênio
11.
Proc Natl Acad Sci U S A ; 114(15): 3909-3914, 2017 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-28348226

RESUMO

Lysine Specific Demethylase 1 (LSD1) removes mono- and dimethyl groups from lysine 4 of histone H3 (H3K4) or H3K9, resulting in repressive or activating (respectively) transcriptional histone marks. The mechanisms that control the balance between these two antagonist activities are not understood. We here show that LSD1 and the orphan nuclear receptor estrogen-related receptor α (ERRα) display commonly activated genes. Transcriptional activation by LSD1 and ERRα involves H3K9 demethylation at the transcriptional start site (TSS). Strikingly, ERRα is sufficient to induce LSD1 to demethylate H3K9 in vitro. The relevance of this mechanism is highlighted by functional data. LSD1 and ERRα coregulate several target genes involved in cell migration, including the MMP1 matrix metallo-protease, also activated through H3K9 demethylation at the TSS. Depletion of LSD1 or ERRα reduces the cellular capacity to invade the extracellular matrix, a phenomenon that is rescued by MMP1 reexpression. Altogether our results identify a regulatory network involving a direct switch in the biochemical activities of a histone demethylase, leading to increased cell invasion.


Assuntos
Histona Desmetilases/metabolismo , Histonas/metabolismo , Receptores de Estrogênio/metabolismo , Movimento Celular , Regulação da Expressão Gênica , Células HEK293 , Histona Desmetilases/genética , Humanos , Lisina/metabolismo , Metaloproteinase 1 da Matriz/metabolismo , Metilação , Regiões Promotoras Genéticas , Receptores de Estrogênio/genética , Sítio de Iniciação de Transcrição , Receptor ERRalfa Relacionado ao Estrogênio
12.
Mol Cell Endocrinol ; 432: 37-43, 2016 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-26206717

RESUMO

Bone loss is naturally occurring in aging males and females and exacerbated in the latter after menopause, altogether leading to cumulative skeleton fragility and increased fracture risk. Two types of therapeutic strategies can be envisioned to counteract age- or menopause-associated bone loss, aiming at either reducing bone resorption exerted by osteoclasts or, alternatively, promoting bone formation by osteoblasts. We here summarize data suggesting that inhibition of the Estrogen-Related Receptors α and/or γ could promote bone formation and compensate for bone loss induced by ageing or estrogen-deficiency.


Assuntos
Osso e Ossos/citologia , Linhagem da Célula , Receptores de Estrogênio/metabolismo , Animais , Humanos , Mesoderma/citologia , Modelos Biológicos , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptor ERRalfa Relacionado ao Estrogênio
13.
PLoS One ; 10(3): e0120672, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25781607

RESUMO

The post-menopausal decrease in estrogen circulating levels results in rapid skin deterioration pointing out to a protective effect exerted by these hormones. The identity of the skin cell type responding to estrogens is unclear as are the cellular and molecular processes they elicit. Here, we reported that lack of estrogens induces rapid re-organization of the human dermal fibroblast cytoskeleton resulting in striking cell shape change. This morphological change was accompanied by a spatial re-organization of focal adhesion and a substantial reduction of their number as evidenced by vinculin and actin co-staining. Cell morphology and cytoskeleton organization was fully restored upon 17ß-estradiol (E2) addition. Treatment with specific ER antagonists and cycloheximide respectively showed that the E2 acts independently of the classical Estrogen Receptors and that cell shape change is mediated by non-genomic mechanisms. E2 treatment resulted in a rapid and transient activation of ERK1/2 but not Src or PI3K. We show that human fibroblasts express the non-classical E2 receptor GPR30 and that its agonist G-1 phenocopies the effect of E2. Inhibiting GPR30 through treatment with the G-15 antagonist or specific shRNA impaired E2 effects. Altogether, our data reveal a novel mechanism by which estrogens act on skin fibroblast by regulating cell shape through the non-classical G protein-coupled receptor GPR30 and ERK1/2 activation.


Assuntos
Estradiol/farmacologia , Estrogênios/farmacologia , Fibroblastos/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Adulto , Benzodioxóis/farmacologia , Derme , Receptor beta de Estrogênio/metabolismo , Feminino , Humanos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Quinolinas/farmacologia , Receptores de Estrogênio/antagonistas & inibidores , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/antagonistas & inibidores
14.
Proc Natl Acad Sci U S A ; 111(42): 15108-13, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25288732

RESUMO

Several physiopathological processes require orientated cellular migration. This phenomenon highly depends on members of the RHO family of GTPases. Both excessive and deficient RHO activity impair directional migration. A tight control is thus exerted on these proteins through the regulation of their activation and of their stability. Here we show that the estrogen-related receptor α (ERRα) directly activates the expression of TNFAIP1, the product of which [BTB/POZ domain-containing adapter for Cullin3-mediated RhoA degradation 2 (BACURD2)] regulates RHOA protein turnover. Inactivation of the receptor leads to enhanced RHOA stability and activation. This results in cell disorientation, increased actin network, and inability to form a lamellipodium at the migration edge. As a consequence, directional migration, but not cell motility per se, is impaired in the absence of the receptor, under pathological as well as physiological conditions. Altogether, our results show that the control exerted by ERRα on RHOA stability is required for directional migration.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Movimento Celular , Receptores de Estrogênio/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Actinas/metabolismo , Animais , Linhagem Celular Tumoral , Proteínas Culina/metabolismo , Matriz Extracelular/metabolismo , Humanos , Macrófagos/citologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Invasividade Neoplásica , Metástase Neoplásica , Prognóstico , Estabilidade Proteica , Estrutura Terciária de Proteína , Proteínas/metabolismo , Cicatrização , Receptor ERRalfa Relacionado ao Estrogênio
15.
PLoS One ; 8(1): e54837, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23359549

RESUMO

ERRα is an orphan member of the nuclear receptor family, the complete inactivation of which confers resistance to bone loss induced by ageing and estrogen withdrawal to female mice in correlation with increased bone formation in vivo. Furthermore ERRα negatively regulates the commitment of mesenchymal cells to the osteoblast lineage ex vivo as well as later steps of osteoblast maturation. We searched to determine whether the activities of ERRα on osteoblast maturation are responsible for one or both types of in vivo induced bone loss. To this end we have generated conditional knock out mice in which the receptor is normally present during early osteoblast differentiation but inactivated upon osteoblast maturation. Bone ageing in these animals was similar to that observed for control animals. In contrast conditional ERRαKO mice were completely resistant to bone loss induced by ovariectomy. We conclude that the late (maturation), but not early (commitment), negative effects of ERRα on the osteoblast lineage contribute to the reduced bone mineral density observed upon estrogen deficiency.


Assuntos
Receptor alfa de Estrogênio/fisiologia , Estrogênios/deficiência , Osteoblastos/citologia , Osteoporose/fisiopatologia , Animais , Linhagem da Célula , Receptor alfa de Estrogênio/genética , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Osteoporose/patologia , Coelhos
16.
Horm Mol Biol Clin Investig ; 14(3): 107-12, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25436725

RESUMO

The estrogen-related receptors (ERRα, ß, and γ) are orphan members of the nuclear receptor superfamily. ERRα and γ are highly expressed in tissues displaying elevated energy demands and are involved in several aspects of energetic metabolism, which they regulate mostly in association with members of the PGC-1 coactivator family. These activities have mostly been documented in the liver, heart, or skeletal muscle. ERRα and γ are also highly expressed in adipocytes. Their precise roles in this cell type are less documented, although published data indicate that they contribute to cell differentiation as well as functionality. This review describes these activities.


Assuntos
Adipócitos/metabolismo , Receptores de Estrogênio/metabolismo , Animais , Diferenciação Celular , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...